Data Base Mappings and Monads: (Co)Induction
نویسنده
چکیده
In this paper we presented the semantics of database mappings in the relational DB category based on the power-view monad T and monadic algebras. The objects in this category are the database-instances (a database-instance is a set of n-ary relations, i.e., a set of relational tables as in standard RDBs). The morphisms in DB category are used in order to express the semantics of viewbased Global and Local as View (GLAV) mappings between relational databases, for example those used in Data Integration Systems. Such morphisms in this DB category are not functions but have the complex tree structures based on a set of complex query computations between two database-instances. Thus DB category, as a base category for the semantics of databases and mappings between them, is different from the Set category used dominantly for such issues, and needs the full investigation of its properties. In this paper we presented another contributions for an intensive exploration of properties and semantics of this category, based on the power-view monad T and the Kleisli category for databases. Here we stressed some Universal algebra considerations based on monads and relationships between this DB category and the standard Set category. Finally, we investigated the general algebraic and induction properties for databases in this category, and we defined the initial monadic algebras for database instances.
منابع مشابه
Leibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study
Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...
متن کاملDuality of Equations and Coequations via Contravariant Adjunctions
In this paper we show duality results between categories of equations and categories of coequations. These dualities are obtained as restrictions of dualities between categories of algebras and coalgebras, which arise by lifting contravariant adjunctions on the base categories. By extending this approach to (co)algebras for (co)monads, we retrieve the duality between equations and coequations f...
متن کاملPredicate Logic for Functors and Monads
This paper starts from the elementary observation that what is usually called a predicate lifting in coalgebraic modal logic is in fact an endomap of indexed categories. This leads to a systematic review of basic results in predicate logic for functors and monads, involving induction and coinduction principles for functors and compositional modal operators for monads.
متن کاملMonadic Type Systems: Pure Type Systems for Impure Settings
Pure type systems and computational monads are two parameterized frameworks that have proved to be quite useful in both theoretical and practical applications. We join the foundational concepts of both of these to obtain monadic type systems. Essentially, monadic type systems inherit the parameterized higher-order type structure of pure type systems and the monadic term and type structure used ...
متن کاملBASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES
Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1102.4769 شماره
صفحات -
تاریخ انتشار 2011